Blog técnico

ATERRIZANDO LA REVOLUCIÓN 4.0…(II parte)

.. LOS ÁRBOLES DE DECISIÓN

.. LOS ÁRBOLES DE DECISIÓN

Si hay unos modelos usados en analítica que son efectivos en el campo del aprendizaje supervisado, y a la vez intuitivos (especialmente en los escenarios de clasificación) son sin duda los árboles de decisión.

Todos pueden entender el enfoque teórico que hay detrás de un árbol de decisión, porque es el mismo esquema que seguimos para clasificar aquello que nos rodea: blanco y en botella, leche.

1

¿CÓMO FUNCIONAN?

Los árboles de decisión realizan la división de sus ramas («esto es o puede ser una manzana»; «esto definitivamente no es una manzana») en función de la información que proporcionen los atributos disponibles.

Básicamente consiste en, a la hora de hacer una división, escoger aquel atributo menos homogéneo de todos: Si todos nuestros ejemplos son frutas, el atributo “fruta” no será escogido como método de discriminación (no habría ningún descarte). Para evitar lo contrario, es decir, que seleccionemos como atributo clasificatorio aquel que es distinto en todas las muestras (y obtener un árbol con una rama por cada muestra) realizamos el ratio de ganancia, donde también se tiene en cuenta el número de opciones que tiene el atributo.

Como en todo modelo, debemos buscar el equilibrio entre sesgo y varianza, para poder utilizarlo para muestras futuras aun no clasificadas (esto se consigue con una técnica denominada, acorde con todo lo anterior, poda de las ramas).

¿PRECISIÓN O INTERPRETABILIDAD?

Pero no todo iba a ser ventajas. Los árboles de decisión tienen, por el contrario, la limitación que su estructura otorga a la hora de clasificar (limitación que, por ejemplo, podríamos suplir con las redes neuronales). Así pues, estará en la decisión del analista lidiar con otro tipo de equilibrio: ¿precisión o interpretabilidad?
Aquí entrarán en juego otros factores, como el grado de conocimiento en analítica del usuario de la solución: si prefiere una herramienta capaz de otorgar una gran precisión en su desempeño (aunque su interpretabilidad sea parecida a una “caja negra mágica”) o quiere algo que pueda entender, aun a riesgo de perder precisión.

23

Clasificación realizada por un árbol de decisión

Para no quedar de agoreros, y contrario a lo que pueda parecer por su simpleza, los árboles de decisión se han resuelto como unas herramientas con mejor desempeño en la práctica, lo que unido a su fácil comprensión los convierten en una de las soluciones más frecuentemente usadas.

¿CÓMO APLICAR ESTO A MI EMPRESA?

Se han aplicado en multitud de campos, con lo que seguro puede amoldarse al caso de su empresa. Basta con plantear adecuadamente el problema. Sea por ejemplo:

  • Determinar si un cliente podrá o no hacer cargo de un préstamo en función de sus características y el histórico de clientes.
  • Evaluar el lanzamiento de una marca en un nuevo mercado en función de experiencias pasadas.
  • Optimizar el uso eficiente de habitaciones de hospital en función de los atributos de los pacientes.
  • Definir la estrategia de marketing en una zona geográfica concreta.

Los atributos no tienen por qué ser discretos, escogiéndose el punto medio de los atributos continuos como punto de división.
Muchas son las áreas en la toma de decisiones que se pueden beneficiar al usar estos árboles, los cuales ayudan en la resolución de problemas claves. Y las empresas, si necesitan algo, son soluciones.

4

The possible solutions to given problem emerge as the leaves of a tree, each node representing a point of deliberation and decision”. – Niklaus Wirth.

COMPARTE ESTE POST